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Abstract 
 
Resonant inspection measures the structural response of a part and evaluates it against the 
statistical variation from a control set of good parts to screen defects.  Its volumetric approach 
tests the whole part, both for external and internal structural flaws or deviations, providing 
objective and quantitative results.  This structural response is a unique and measurable signature, 
defined by a component’s mechanical resonances.  These resonances are a function of part 
geometry and material properties and are the basis for Resonant Acoustic Method for Flaw 
Detection.  By measuring the resonances of a part, one determines the structural characteristics of 
that part in a single test.  Typical flaws and defects adversely affecting the structural 
characteristics for powdered metal as would be introduced in the green state are geometry related 
and typically a result of handling.  This paper introduces the physical basis of the technique. 
 
Theoretical Background 
 
Modal analysis is defined as the study of the dynamic characteristics of a mechanical structure or 
system.  All structures, even structures such as metal gears or similar parts that are apparently 
rigid to the human eye, undergo deformation.  These deformations can be described using modal 
analysis.  Specifically, all structures have mechanical resonances, where the structure itself 
amplifies any energy imparted to it at certain frequencies.  For example, tuning forks or bells will 
vibrate at very specific frequencies, their natural frequencies, for long periods of time with just a 
small tap.  The sound that is made is directly due to these natural frequencies.  In fact, any noise 
generated by a structure is done so by vibration, which is simply a pattern of summed sinusoidal 
deformations.  The Resonant Acoustic Method of Non-destructive Testing (RAM-NDT) utilizes 
this structural dynamic behavior to evaluate the integrity and consistency of parts. 
 
For illustrative purposes, consider the single degree-of-freedom (SDOF) mass, spring, damper 
system in Figure 1. It has one DOF because its state can be be determined b one quantity (x), the 
displacement of the mass. The elements of this simplified model are the mass (m), stiffness (k) 



and damping (c). The energy imparted into the system by the excitation force (f) is stored in the 
system as kinetic energy of the mass and potential energy of the spring and is dissipated by the 
damping. The mathematical representation of the SDOF system, which is called its equations of 
motion, is given in Equation (1) below. 
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The solution to the equation of motion produces an eigenvalue problem which yields the 
undamped natural frequency as  
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Equation (2) reveals the natural frequencies, or resonances, of a system that are determined by its 
mass (i.e., volume and density) and stiffness (i.e., Young's modulus and cross-sectional 
geometry).  While in Equation (2) holds only for an SDOF system, the underlying relationship of 
mass and stiffness can be generalized for more complex systems.  That is, an increase in stiffness 
will increase the natural frequency and an increase in mass will decrease the natural frequency.  
For example, consider the strings on a guitar. The larger diameter strings (more mass) produce 
lower tones than the smaller strings (less mass).  Also, a string has a higher pitch when tightened 
(increased stiffness) than when loosened (decreased stiffness).  It is these fundamental properties 
of the resonances of a system that RAM NDT utilizes to evaluate the integrity and consistency of 
parts. 
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Figure 1.  Single Degree of Freedom (SDOF) discrete parameter model 
 
The natural frequencies are global properties of a given structure and the presence of structural 
defects causes shifts in these resonances.  For example, a crack will change the stiffness in the 
region near the crack and a variation in density or the presence of porosity will change the mass.  
A crack defect typically reduces the stiffness in the material, thus decreasing the natural 
frequency.  Similarly, porosity in a cast part reduces mass, thus increasing the natural frequency.   
These shifts are measurable if the defect is structurally significant with respect to the either the 
size or location of the flaw within a specific resonance mode shape. With some defects, a shift in 
resonant frequency can also be noticed audibly, such as a cracked bell that does not ring true. 
 



 
Relationship to green-part induced flaws 
 
The RAM-NDT method is particularly well suited detect several flaws which are typically 
introduced to the manufacturing process while the part in the green state.   
These flaws are: 

geometric and symmetry deviations 
cracks induced as a result of press settings 
uneven density distribution 
material contamination 

 
Each of these flaws is readily detectable using the RAM-NDT method by virtue of the fact that 
each of these flaws results in a change in resonant signature of the sintered part.   
 
 
Modal Parameters and Material Properties 
 
We are concerned with the relationship between modal parameters and intrinsic material 
properties. There is a direct correlation between stiffness and the modulus of elasticity, E. Hence, 
an account for what determines E is given below. First, however, is some general elasticity 
theory, which will put E in a context, but also helps in understanding the section about material 
damping. 
 
 
Elasticity [1] 
 
When a load is applied to a material, deformation occurs because of a slight change in the atomic 
spacing. The load is defined in terms of stress , which is typically in units of pounds per square 
inch (psi) or megapascals (Mpa). The deformation is defined in terms of strain , which is 
typically in units of inches (or centimeters) of deformation per inches (or centimeters) of the 
initial length or in percent. 
 
The amount and type of strain is dependent on the atomic bond strength of the material, the stress, 
and the temperature. Up to a certain stress limit for each material the strain is reversible; that is, 
when the stress is removed, the atomic spacing returns to its original state and the strain 
disappears. This is referred to as elastic deformation, and the stress and strain are related by a 
simple proportionality constant. For tensile stress 
 

 = E   (3) 
 
and the proportionality constant E is called the modulus of elasticity or Young’s modulus. For 
shear loading 
 
 = G   (4) 

 
where  is the shear stress,  the shear strain, and G the proportionality constant, referred to as the 
shear modulus or the modulus of rigidity. 
 
At ambient and intermediate temperatures for short-term loading, most ceramics behave 
elastically with no plastic deformation up to fracture. This is known as brittle fracture and is one 



of the most critical characteristics of a ceramic that must be considered in design for structural 
applications. 
 
Metals also behave elastically up to a certain stress, but rather than fracture in a brittle manner 
like ceramics, most metals deform in a ductile manner as the stress is further increased. This is 
referred to as plastic deformation or plastic strain and is not reversible. Some metals, like 
aluminum for instance, have a smooth transition from elastic strain to plastic strain. Others, low-
carbon steel for instance, have a discontinuity at the onset of plastic strain. This is called the yield 
point. 
 
Not all ceramics behave in a brittle fashion and not all metals behave in a ductile fashion. Most 
ceramic materials undergo plastic deformation at high temperature. Pure metals have the greatest 
degree of ductile behavior. Addition of alloying elements reduces ductility to the point where 
some metals are brittle at room temperature. Cast iron is a good example. Intermetallic 
compounds also have little or no ductility at room temperature. 
 
 
Modulus of Elasticity [1] 
 
The modulus of elasticity E is the proportionality constant between elastic stress and elastic strain 
and can be thought of simply as the amount of stress  required to produce unit elastic strain . 
 
E = /   (5) 
 
The magnitude of the elastic modulus is determined by the strength of the atomic bonds in the 
material. The stronger the atomic bonding, the greater the stress required to increase the 
interatomic spacing, and thus the greater the value of the modulus of elasticity. Ceramics with 
weak ionic bonding have low E values. Ceramics with strong covalent bonding have high E 
values. 
 
Metals show a similar trend. Metallic bonding is the predominant bond mechanism for metals. It 
is also referred to as electronic bonding, from the fact that the valence electrons (electrons from 
unfilled shells) are freely shared by all the atoms in the structure. At any given time, each atom 
has enough electrons grouped around it to satisfy its need for a full outer shell. It is the mutual 
attraction of all the nuclei in the structure to this same cloud of shared electrons that results in the 
metallic bond. 
 
Because the valence electrons in a metal distribute themselves uniformly and because all the 
atoms in a pure metal are of the same size, close-packed structures result. Such closed-packed 
structures contain many slip planes along which movement can occur during mechanical loading, 
producing the ductility that we are so accustomed to for metals. Pure metals typically have very 
high ductility and can undergo 40 to 60% elongation prior to rupturing. Highly alloyed metals 
such as the superalloys also have close-packed structures, but the different-size alloying atoms 
disrupt movement along slip planes and decrease the ductility. Superalloys typically have 5 to 
20% elongation. 
 
Metallic bonding occurs for elements to the left and in the interior of the periodic table. Metals 
with weaker bonding, such as aluminum or magnesium, have low elastic modulus. The elastic 
modulus of aluminum is 69 GPa (150,075 ksi). Metals with intermediate bond strength have 
intermediate E values. For example, most iron alloys and Ni-based or Co-based superalloys have 



and elastic modulus of around 200 GPa (30,000 ksi). Metals like tungsten and molybdenum have 
strong atomic bonds and high values of elastic modulus. 
 
Bond strength, and thus E, varies in different crystallographic directions. Elastic anisotropy 
occurs in metals as well as ceramics and in cubic as well as less-symmetrical crystal structures. A 
single crystal of iron, which has the body-centered cubic structure, has an elastic modulus of 283 
GPa (41,035 ksi) in the [111] direction and 124 GPa (17,980 ksi) in the [100] direction. The [111] 
direction involves atoms that are most closely packed and have the highest net bond strength. 
This results in a higher E value. 
Most metals and ceramics are polycrystalline and are made up of many crystals (grains) in 
random orientation. If the orientation is truly random, the overall elastic modulus is an average of 
the elastic moduli for various crystallographic directions. The elastic modulus values most 
commonly reported for metals and ceramics are average values for polycrystalline bodies. Even 
though these polycrystalline metals and ceramics have an apparent single elastic modulus, the 
reader must be aware that the individual crystals within the microstructure are anisotropic and 
that internal stresses may be present that can affect the application of the material. 
 
The elastic modulus is affected by temperature. E decreases slightly as the temperature increases. 
This results from the increase in the interatomic spacing due to thermal expansion. As the 
interatomic spacing increases, less force is necessary for further separation. 
 
Many materials encountered by an engineer are made up of more than one composition or phase 
and have an elastic modulus intermediate between the moduli of the two constituent phases. In 
cases were the elastic modulus value is not available, it can be estimated using the law of 
mixtures: 
 
E = EaVa + EbVb (6) 
 
where Ea and Eb are the elastic moduli of the constituents, Va and Vb the volume fractions, and E 
the estimated elastic modulus of the mixture. This is a simplified relationship and is suitable only 
for rough estimates. 
 
Porosity also affects the elastic modulus, always resulting in a decrease. MacKenzie has derived a 
relationship for estimating the elastic modulus of porous materials: 
 
E = E0(1 - 1.9P + 0.9P2) (7) 
 
where E0 is the elastic modulus of a nonporous material and P the volume fraction of pores. This 
relationship is valid for materials containing up to 50% porosity and having a Poisson’s ratio of 
0.3. Most PM components contain 5-10% porosity. Hence, the strength of the final component 
will be lowered. 
 
 
Elastic modulus measurement 
 
There are many techniques available for to measure the elastic modulus. One of them involves 
direct measurement of strain as a function of stress, plotting the data graphically and measuring 
the slope of the elastic proportion of the curve. This technique and be conducted accurately at 
room temperature using strain gauges, but is limited at temperatures above which strain gauges 
can be reliably attached. [1] 
 



The other techniques of measuring dynamic Young’s Modulus, E use, in some form or another, 
the basic wave equation for the propagation of a longitudinal elastic wave in and elastic medium 
[2]: 
 
E = 2 (8) 
 
where  is the mass density of the medium and  is the wave speed. Thus the methods that are 
concerned with measurements of transit time t (and hence velocity) of ultrasonic pulses over a 
known distance L in an elastic medium apply Eq 8 directly (  = L/t), assuming that  is known or 
can be measured also. In the case of the methods that utilize measurements of resonant frequency 
of standing or decaying elastic waves in an elastic medium a modified form of Eq 8 is applied: 
 
E = 2 = (f )2 (9) 
 
where f is the resonant frequency and  is the wavelength. The specific geometrical details of the 
specimen usually determine . Again in the frequency methods  must me known or measured. 
 
There is a frequency method relevant to our technique based on impulse excitation of vibration, in 
which the resonant frequency of the material is measured and E is calculated from the equation 
[1]:  
 
E = CMf2  (10) 
 
where C is a constant depending on the specimen size and shape and on Poisson’s ratio, M is the 
mass of the specimen, and f is the frequency of the fundamental transverse (flextural) mode of 
vibration. This technique can be used accurately over the complete temperature range and for the 
various crystallographic directions of single crystals as well as for the average elastic modulus of 
polycrystalline material. 
 
 
Material Damping [3] 
 
The damping capacity of a material is a measure of the energy that is dissipated in the material 
during mechanical vibration. Most of the frequently used metals and alloys exhibit a low damping 
capacity. 
 
 
Definitions 
 
Material damping is a property related to time-dependent elasticity. Elasticity theory of 
crystalline metallic materials dictates that the relationship between an applied load and the 
resultant deformation obeys Hooke’s Law, i.e. the resultant strain is proportional to the applied 
stress. Hooke’s law, however, does not account for the time effect, that is, the applied load and 
the resultant deformation are assumed to be perfectly in phase, a condition valid only when the 
loading rate is so low that the deformation process may be considered to be instantaneous and 
static. In practice, metals and alloys respond to an applied load, not only by and instantaneous 
elastic strain that is time-independent, but also by a strain that lags behind the applied load, which 
is time-dependent (relaxation or anelasticity). Therefore the overall strain, , consists of two parts: 
one part, e, is the elastic strain, and the other, a, the anelastic strain, i.e. 
 



 = e + a     (11)   

a = i[1-exp(-t/ )]  (for loading)  (12) 
a = iexp(-t/ )  (for unloading) (13) 

 
where i is the initial strain upon loading, t is the time and  is the characteristic relaxation 
constant which characterizes the anelasticity of a material. Because of the lag induced by the 
relaxation, the stress  and strain  may be expressed as: 
 

 = 0exp(i t)     (14) 
 = 0exp[i( t - )]    (15) 

 
where 0 and 0 are the stress and strain amplitudes, respectively;  is the angular vibration 
frequency; and  is the loss angle by which the strain lags behind the stress. By combining these 
two equations, the resultant complex modulus, E, is defined as: 
 
E = /  = 0/ 0(cos  + i sin ) = E’ + iE’’ (16) 
 
where 
 
E’ = 0/ 0 cos     (17) 
 
is called the storage modulus, and 
 
E’’= 0/ 0 sin      (18) 
 
is the loss modulus. In an ideally elastic material,  is equal to zero and /  represents the elastic 
modulus, which obeys Hooke’s law. However, most materials are anelastic, so  is not zero and 
there exists a non-zero imaginary part of the complex modulus. The ratio of the loss modulus to 
the storage modulus is given by: 
 

 = E’’/E’ = tan     (19) 
 
where  is called the loss factor and tan  the loss tangent. Both  and  are used to characterize 
the damping capacity of materials. 
 
Specific damping capacity (SDC) is another common measure of damping. In the stress vs. strain 
curve a hysteresis loop is formed because of the lag of strain behind stress when the material is 
under cyclic loading. The area enclosed by the hysteresis loop represents the energy dissipated 
inside the material during one cycle. The magnitude of such a hysteresis at low stresses is 
representative of the damping capacity. Specific damping capacity ( ), is the ratio of the 
dissipated energy ( W) during one complete cycle to the maximum stored energy (W) from the 
beginning of the loading to the maximum, is expressed as: 
 

 = W/W     (20) 
 
where 
 

W = (circle)  d     (21) 
 



W =   d  ( t: 0  /2)   (22) 
 
Where  and  are given by Eqs. (14) and (15). 
 
Material damping is characterized not only by the phase lag of deformation behind the applied 
load in forced vibration and the suppression of resonant amplitude, but also by the decay of 
vibration amplitude in free vibration. There are also several other quantities, which can be used to 
characterize damping capacity. Among them, logarithmic decrement is a common measure of 
damping and is derived from the amplitude decay of the specimen under free vibration. Given the 
amplitude-time curve. The damping capacity at any stress may be quickly and accurately 
determined [4]. The logarithmic decrement, , is given by: 
 
 = 1/n ln(Ai/Ai+n)    (23) 

 
where Ai and Ai+n are the amplitudes of the ith cycle and the (i +n)th cycle, at times t1 and t2 
respectively, separated by n periods of oscillation. A vibrating anelastic material is analogous to 
the Kelvin-Voigt model, which consists of a linear mechanical system with a spring (restoring 
force), and a bulk mass and a dashpot resistance (damping). 
 
The inverse quality factor Q-1, is another widely used material damping measure. It is defined by: 
 
Q-1 = f2-f1/fr     (24) 
 
Where f1 and f2 refer to half power bandwidth frequencies and fr is the resonant frequency in the 
spectrum of square amplitude vs. frequency for a specimen under forced vibration. The broadness 
of the resonant peak characterizes the magnitude of material damping. 
 
This method has the advantage that the damping capacity can be measured accurately for very 
low stresses in the material. There are two objections, which can be raised in connection with this 
method [4]: 

1. Since the magnitude of the stress cycle is continuously changing, it is not possible to 
study the variation in damping capacity with stress. Since stress appears to be one of the 
most significant variables involved, this represents a serious limitation. 

2. The relationship between the shape of the resonance curve and the true damping capacity 
of the material depend on the type of relationship, which exists between stress and 
damping capacity. Since this stress-damping capacity relationship is not know in general 
for a particular material, there is some question as to the physical interpretation of the 
resonance curve.  

 
For the cases of relatively small damping capacity (e.g. tan <0.1), all the aforementioned 
damping quantities, , tan , , Q-1,  and  are interchangeable and are related by the following 
equation: 
 

 = tan  =  = Q-1 = /  = /2   (25) 
 
 
Damping mechanisms 
 
The damping behavior in crystalline materials may typically be attributed to several mechanisms, 
which include thermoelastic damping, magnetic damping, viscous damping and defect damping. 



The first three types of damping mechanism generally result from the bulk response of a material 
the fourth mechanism, defect damping, is an intrinsic source and stems from the internal friction 
exerted on atomic movement in the regions of defects in crystalline metals and alloys. Among the 
damping mechanisms that are important in metals and alloys, defect damping represents a large 
part of the overall damping and is thought to be one main contributor to the overall damping of 
crystalline materials under conventional conditions. Therefore, both internal friction and damping 
are interchangeable terms in describing damping behavior for most of crystalline materials. 
According to defectology any type of defect will be a source to dissipate energy because of 
internal friction by the intrinsic movement of the defect under cyclic applied stress. The defects in 
polycrystalline materials and alloys include point defects (vacancies and disorders), line defects 
(dislocations), surface defects (grain boundaries and interfaces) and bulk defects (micropores and 
microcracks). The dislocations contribute to damping by the internal friction between the 
vibrating dislocation lines and their neighboring regions, the grain boundaries by their viscous 
sliding, the interface by the mobility of the incoherent microstructure at the strongly bonded 
interfaces, and the slip at the weakly bonded interfaces, and the micropores by the stress 
concentration and mode conversion around the pores. 
 
To some extent these defects alter the otherwise perfect symmetry and uniformity of the metallic 
crystal structure. It is the asymmetry and non-uniformity that govern microstructural deformation 
behavior in a crystalline material with defects under applied load, and therefore dominate the 
macro-mechanical behavior of the material in service. In a perfect single crystal under an applied 
stress well below the yield stress, every unit cell of the crystal deforms uniformly and can restore 
its original position by interatomic bonding elasticity upon removal of the applied load. In an 
imperfect crystal, however, each defect causes distortion of the crystal symmetry and therefore 
induces an accompanying stress concentration. Although the magnitude of the externally applied 
stress is small, the internal stress concentration in some local regions may be sufficient to cause 
atomic rearrangement in regions of high density of defects. During the rearrangement, the atoms 
in the distorted region are capable of siding by one another, which are viscous-like in nature in 
response to the applied load. At ambient temperatures, the relative atomic displacements are 
typically fractions of an atomic diameter. At high temperatures this sliding can be extensive and 
lead to viscoelastic strain. The displaced atoms introduce internal stress relaxation and the 
displacements can be recovered upon load removal. The internal friction is associated with the 
reversible or irreversible movements of atoms in the vicinity of defects under cyclic loading and 
leads to mechanical hysteresis in stress vs. strain behavior. 
 
 
Damping mechanisms associated with secondary phases 
 
The presence of secondary phases introduces a number of changes in the microstructure in terms 
of interfaces and dislocations and hence leads to a change in the overall damping behavior of 
metals and alloys. The secondary phases can be introduced by precipitation reaction-induced 
phase transformation or dispersion. Precipitation phenomena typically occur by ageing a meta-
stable supersaturated solid solution alloy that has be solution treated and quenched from elevated 
temperatures. 
 
Secondary phases influence damping behavior of metals and alloys by four possible mechanisms. 
First, the interfaces between the secondary phases and matrix dissipate energy under cyclic 
loading. Second, an enhanced dislocation density due to the thermal mismatch difference between 
secondary phases and matrix increases energy dissipation sources. Third, interactions between 
precipitates and dislocations or grain boundaries may lead to a change in damping response. 
Fourth, the precipitated secondary phase particles or added ceramic particles may possess 



different intrinsic damping from that of the matrix material and thereby lead to a rule of mixtures 
effect on the overall damping behavior. 
 
PM components are not precipitation hardened but solution hardened. The difference is that the 
atoms are well dispersed in the lattice instead of being present in clusters and as a consequence 
the damping effects will not be as pronounced.  
 
 
Damping capacity 
 
The work of numerous investigators, has established some facts about the general behavior of 
damping capacity which will be summarized here [4]: 

1. The damping capacity is independent on frequency over a large range. 
2. The damping capacity is dependent on the magnitude of the stress. In general the 

damping capacity increases with stress, although in some cases the opposite occurs. 
There is evidence to support that for very small stresses the damping capacity is 
essentially constant, but is still an appreciable amount. 

3. The damping capacity increases with temperature. It has been suggested by Brophy that 
an apparent rise in damping capacity at high frequencies may be a temperature effect, 
since heat is being generated in the specimen by internal friction faster than it can be 
dissipated by the supports. 

4. Some of the previous work indicates an increase of damping capacity with an increase in 
grain size, although this was not shown for all metals. 

5. Very slight changes in the structure, composition, state and previous history of the 
specimen may have large effects on the damping capacity. 

 
Considering the dependence of the damping capacity of most metals and alloys on strain 
amplitude, temperature and frequency, certain experimental conditions should be specified for the 
damping characterization. 
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